
A nonadiabatic theory for electron transfer and application to ultrafast catalytic reactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 255204

(http://iopscience.iop.org/0953-8984/19/25/255204)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 19:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/25
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 255204 (30pp) doi:10.1088/0953-8984/19/25/255204

A nonadiabatic theory for electron transfer and
application to ultrafast catalytic reactions

S Aubry
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Abstract
We propose a general formalism which extends those used for the standard
theory of electron transfer (ET) in chemistry but also becomes equivalent to
it far from the inversion point. Our model yields different results essentially
in the vicinity of the inversion point when the energy barrier for ET is small.
In that regime, the electronic frequencies become of the order of the phonon
frequencies and the process of electron tunnelling is nonadiabatic because it
is strongly coupled to the phonons. The consequence of nonadiabaticity is
that the effective electron dynamics becomes nonlinear and that there is energy
dissipation through the phonon bath. Thermal fluctuations appears as a random
force in the effective equation.

We use this formalism for a careful investigation of the vicinity of the
inversion point. We find that when the model parameters are finely tuned,
ET between donor and acceptor becomes reversible. Then, large amplitude
electronic oscillations, associated with large amplitude and collective phonon
oscillations at the same frequency, are spontaneously generated. This system is
a coherent electron–phonon oscillator (CEPO) which cannot be confused with
a standard normal mode. The acceptor which does not capture the electron may
play the role of a catalyst. Thus when the catalyst is finely tuned with the donor
in order to form a CEPO, it may trigger an irreversible and ultrafast electron
transfer at low temperature between the donor and an extra acceptor, while in the
absence of a catalyst, ET cannot occur. Such a trimer system may be regulated
by small perturbations and behaves as a molecular transistor. We illustrate this
idea by explicit numerical simulations on trimer models of the type donor–
catalyst–acceptor. We discuss the relevance of our approach for understanding
the ultrafast electron transfer experimentally observed in biosystems such as the
photosynthetic reaction centre.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Standard chemical models describing electron transfer (ET) between a donor and an acceptor
site (or molecule) consider that the local atomic reorganization around an electron is essential.
A single electron in a molecule interacts by its charge and also by orbital overlaps with its
local environment which induces a local reorganization of the nuclei. The consequence is
that the electron self-traps as a polaron so that, for transferring an electron from its initial
site (donor) to another site (acceptor), it is first necessary to extract the electron from the
potential well around the donor site which has been generated self-consistently. Thus, there
is an energy barrier which is generally relatively large for transferring the electron and is in
the range of an eV. Thermal fluctuations are necessary to overcome this barrier and which
make ET generally a slow thermally activated process which requires times much longer than a
nanosecond.

Reorganization effects should be especially important in biosystems such as DNA or
enzymes which are proteins. These proteins are polyelectrolytes with charged amino acids
wrapped in a special conformation for reaching their functionality because of relatively
small interactions (electrostatic, steric and van de Waals forces). Some functional parts are
hydrophobic without water and ions which could screen the charges. Thus, an extra electron in
those soft systems should strongly interact with the charged radicals of its environment, which
moreover is highly deformable.

Biosystems exhibit many examples where ET becomes unusually ultrafast ET (at the scale
of a ps) (UFET) and even faster at low temperature (for example the photosynthetic reaction
centre (PRC)). In that case, there should clearly exist almost no energy barrier for transferring
the electron despite the fact that the reorganization energy might be very important.

We propose here new theoretical investigations reviewing and continuing those published
earlier [18, 9, 19]. This paper is organized as follows.

• We briefly recall the standard ET theory (section 2).
• We extend this standard theory of ET to the nonadiabatic case. For that purpose, we

introduce new reaction coordinates which are the electronic complex amplitudes in order
to describe the electron dynamics which thus is not necessarily slaved to those of the
atoms. We obtain a new theory which in principle contains the former standard theory
as a particular case but does not assume the adiabatic approximation since it describes
the intrinsic dynamics of the electronic wavefunction coupled to its environment. The
electron dynamics is described by an effective nonlinear Schrödinger equation with a
memory kernel and a random force describing the effect of thermal fluctuations (sections 3
and 4).

• We apply this improved theory for understanding ET in the vicinity of the inversion
point for a dimer model (donor–acceptor) at zero temperature. A special case yields
the coherent electron–phonon oscillator (CEPO) which could induce important and novel
physical phenomena. We show that while no direct ET between a donor and an acceptor
is possible at zero temperature, the interaction of this system with an appropriately tuned
catalyst which forms a CEPO with the donor could trigger ultrafast ET between donor and
acceptor (section 5).

• We briefly describe experimentally observed phenomena in the photosynthetic reaction
centre (PRC) [17] and emphasize their qualitatively agreement with the predictions of our
theory (section 6).

• In appendix A, in the limit of small transfer integral and low temperature, we derive an
effective approximate nonlinear Schrödinger equation for the electron dynamics without
memory kernel which is formally simpler than our general equation. Appendix B derives
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an approximate equation for the electron densities where the phases of the electronic
amplitudes are eliminated, assuming there are no resonances between the electronic levels.

2. Basics of standard electron transfer theory

It is first necessary to recall the basic concept of the standard theory for ET in chemistry.
We describe here the basic concepts of the standard theory of ET used in chemistry which
was pioneered by Marcus [1] and later developed by many others (Levich, Dogonadze, Hush,
Jortner et al [2–6]). Considering ET between two molecules (donor and acceptor) or two
different sites of a molecule, it is assumed that the system has two electronic states. The
first one corresponds to the initial state where the electron is on the donor molecule and the
second one corresponds to the final state where the electron is on the acceptor molecule. The
overlap between the redox orbitals associated with these two states is supposed to be small so
that they can be considered as eigenstates (except at resonance when their two energy levels
are equal). The free energy of the system depends on the many coordinates describing the
displacements of nuclei of the molecules and the environment and also on the state of the
electron. Thus, there are two free energy surfaces which take into account all contributions from
the chemical, electrostatic, etc interactions. The first surface describes the reactants (that is, the
state before the chemical reaction when the electron is on the donor molecule) and the second
one describes the products (that is, the state after the chemical reaction when the electron is on
the acceptor molecule). These surfaces are well defined within the standard adiabatic (or Born–
Oppenheimer) approximation where the electronic energy is only a function of the coordinates
of the nuclei. It is assumed that the transfer integral between the donor and the acceptor is
small so that the eigenstates of the donor and acceptor practically do not hybridize (except near
resonance).

For the same reaction coordinates, the reorganization energy is the same and thus the
difference between the first and the second energy surface is nothing but the difference of the
electronic levels on the donor and on the acceptor for the same environment.

The minimum versus the nuclear coordinates of these two energy surfaces with the electron
either in the initial or the final electronic state determines the initial (reactant) and the final
(product) average configurations respectively of the molecules. However, the environment is
supposed to be at nonvanishing temperature; that is, the reaction coordinates fluctuate away
from their local minima.

It is also assumed for simplicity that these surfaces are quadratic with the same curvature,
which is equivalent to assuming that the phonons of these molecules are perfectly harmonic
with frequencies independent of the electronic state. These surfaces can be determined in
principle from the knowledge of the structures of the molecules and from their normal modes
and frequencies [1]. Thus, these two quadratic surfaces are the same. except they are shifted.

ET may only occur by tunnelling (with some probability) when the electronic states on
the donor and the acceptor become almost degenerate. The electronic eigenstate hybridizes the
electronic states on the donor and the acceptor only in the near resonant situation. Then, the
electron may be transferred from the donor to the acceptor by quantum tunnelling with some
probability. This situation precisely occurs at the intersection of these two energy surfaces.

Thermal fluctuations are thus necessary for bringing the reaction coordinates from the
initial energy minimum at this interaction. The point which may be reached with the largest
probability corresponds to the saddle point which is the lowest point at the intersection between
the two energy surfaces. This point determines the lowest energy barrier �G� for transferring
the electron (see figure 1) (this situation is similar to those of the general theory of chemical
reactions described from the pioneering ideas of Kramers [7]). Thus, it turns out that the
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Figure 1. Energy versus reaction coordinates for the reactants (curve D) and the products for normal
reaction (curve An), inverted reaction (curve Ai) and at the inversion curve (curve Ac). The electron
in the initial state requires a positive excitation energy ��el for the normal reaction, and a negative
excitation energy −��el for the inverted reaction (which could be directly emitted as light). There is
a positive energy barrier �n or �i in both cases between the reactants and products which requires
thermal activation for the reaction to occur. This energy barrier as well as the energy for a direct
electron excitation vanishes for the inversion curve and then the electron transfer becomes ultrafast.

probability of ET per unit time depends on temperature T with the standard Arrhenius form
A(T ) e−�G�/kB T .

The prefactor A(T ) is determined more or less empirically according to the tunnelling
probability at electron resonance. Standard theory of tunnelling assumes that the double-well
potential due to the environment of the electron is static during the time of tunnelling between
the two wells. Actually, the local potential generated by the thermal fluctuations is not static but
varies over the characteristic time of phonons. Because of that, the resonance between the two
electronic levels may not persist long enough to allow electron tunnelling. This fact is taken
into account by considering that tunnelling occurs only with a certain probability which can be
estimated for example from Landau–Zeener models [8].

Two regimes can be defined regarding the tunnelling [8]. The adiabatic regime is obtained
when the overlap between the redox orbitals (although supposed to be small) is nevertheless
sufficiently large (strong reactants) in order that, when resonance occurs, electron tunnelling
is fast at the scale of the phonon frequencies. Thus its probability to occur is almost 1. The
diabatic regime is obtained at small overlap (weak reactants). Then, the tunnelling becomes
slow at the scale of the phonon characteristic time and has a small probability to occur.
In any case, the intrinsic time for tunnelling is usually much shorter than the characteristic
time required for the thermal fluctuations to overcome an energy barrier supposed to be large
compared to the thermal energy.

Despite the fact that the standard theory does not properly describe the electron tunnelling
in a self-consistent deformable potential, it appears that nevertheless the essential contribution
to the time required for ET is the time to reach the top of the energy barrier. When this energy
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barrier is large, the standard theory yields results which are in excellent agreement with the
experimental observations.

The standard theory distinguishes two regimes shown by the scheme in figure 1. The
normal regime is when the second energy surface with the electron on the acceptor at the initial
configuration is above the first energy surface with the electron on the donor. Then, a direct
transfer of the electron from donor to acceptor at fixed reaction coordinates would require a
positive energy �el.

The second regime, called inverted, is obtained when the second energy surface is below
the first one for the initial configuration. Note that this inverted situation differs from the normal
situation because there is a second pathway for the electron to reach the final state. The electron
may also decay directly from its initial state to its final state which has a lower energy by the
direct emission of a photon at fixed nuclei configuration. Actually, this process is generally very
slow. Nevertheless it may manifest in this inverted regime as chemiluminescence which may
be observed at low temperature when the first pathway requiring thermal fluctuations becomes
inefficient enough [1].

The energy barrier for ET precisely vanishes at the Marcus inversion point when the initial
electronic state and the final electronic state are degenerate at the initial atomic configuration
(see figure 1). Since there is no need of thermal fluctuation for having resonance, the standard
theory expects that ET becomes ultrafast in the close vicinity of this inversion point and is even
more efficient at low temperature. In that case, the characteristic time for ET is essentially due
to the prefactor A(T ) which has only been empirically estimated.

It is then clear that the standard ET theory which phenomenologically reduces tunnelling
to a probability of transfer is clearly not sufficient for describing ET in the vicinity of the
inversion point. This problem was explicitly mentioned in section 3.6 (Tunnel Times) of [8] as
an unsolved problem although its relevance in the case of ultrafast ET was not recognized.

For improving the theory of ET in the vicinity of the inversion point, it is required
to consider the intrinsic dynamics of the electron which should be considered as slaved
adiabatically to the reaction coordinates.

3. Extended ET Theory

For improving the standard theory in the vicinity of the inversion point, the electronic variables
should not be slaved to the reaction coordinates but should be considered as independent
variables with their intrinsic dynamics coupled to those of the reaction coordinates. In other
words, we should miss out the standard adiabatic approximation. This is essentially the
extension we are presenting here. Thus, unlike the standard theory, we shall not consider
tunnelling as a probabilistic event which is estimated empirically, but we shall consider the real
dynamics of the quantum electron during tunnelling in its self-consistent deformable potential.

The hypotheses we use for constructing our model are included in the set of hypotheses
used by the Marcus theory except for the adiabatic hypothesis.

• We consider a model with a single electron which may occupy two states, either on the
donor molecule (D) or on the acceptor molecule (A) or two sites of the same molecule.
Actually, we extend our model to more than two states but to a larger collection of
electronic states α (redox orbitals).

• We assume that there is a small overlap between the orbitals of the different electronic
states α.

• We neglect the possible energy radiation through the electromagnetic field induced by the
variation of the spatial distribution of charges during ET.
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• We consider the environment as a large collection of harmonic oscillators (corresponding
to the normal modes of the molecules labelled by i )1.

• We assume that the dynamics of the nuclei of the environment can be described classically.
In other words, the displacements of the nuclei in the close environment of the electron are
much larger than their quantum zero point motion2.

We describe the wavefunction of the electron �(r) within a tight-binding representation
as a linear combination of the (orthogonalized) orbitals

�(r) =
∑

α

ψα�α(r)

where �α(r) are the wavefunctions of the electron at the collection of sites α which might be
involved during electron dynamics (for the two-site model, we only have α = D (donor)
or α = A (acceptor)). The complex amplitudes ψα fulfil the normalization condition∑

α |ψα|2 = 1.
The total energy H of the system is a function of the electronic variables {ψα} and of the

coordinates {ui} and their conjugate momenta {pi = mi u̇i } of the normal modes labelled by i
of the environment. With the standard assumption that the oscillators are harmonic and that the
coupling with the electron densities |ψα|2 is linear, H has the general form

H = HT({ψα})+ 1

2

∑

i

⎛

⎝ p2
i

mi
+ miω

2
i

(
ui −

∑

α

ki,α|ψα|2
)2
⎞

⎠ . (1)

Each normal mode i is linearly coupled to the local density |ψα|2 of the electron at site α
by the coupling constant ki,α . Thus, this collection of harmonic oscillators plays the role of a
thermal bath.

HT({ψα}) is the rest of the energy which thus only depends on the complex amplitudesψα .
It can be defined as the minimum at fixed {ψα} of the total energy of the system with respect to
all the nuclei coordinates and momenta

HT({ψα}) = min{ui ,pi }
H({ψα}, {ui , pi}). (2)

By definition, this energy HT is the total energy of the system after complete relaxation of
the environment at fixed {ψα}. This energy includes in particular the variation of the atomic
interactions due to their reorganization (elastic energies, chemical bond energies, etc) and the
variations of electrostatic energies due to the charge redistribution. It is important to note from
now on that this energy is not a bilinear function of {ψα} and {ψα}� as it would be for an
electron in a rigid potential which does not involve any reorganization energy.

Actually, HT is the (nonlinear) Hamiltonian which would describe the dynamics of the
electron if the variations of electronic densities were very slow compared to the dynamics
of the atoms. In principle, to be valid this approximation requires the transfer integrals
between the different sites to be small compared with the characteristic phonon energies. This
approximation is thus valid in the situation opposite to those where the standard adiabatic
approximation is valid, that is when the electron dynamics is much faster than the atom
dynamics. For that reason, HT may be called the anti-adiabatic electronic Hamiltonian.

Thus near the anti-adiabatic limit, the electron dynamics may be described by an effective
nonlinear Hamiltonian while the atomic motion is slaved to the electron dynamics. It is the

1 Our theory is not valid for small molecules reacting in the vacuum. These small systems have only a few modes
which cannot play the role of a thermal bath. In addition, in that situation, these modes should be considered as
anharmonic.
2 This approximation may be not valid when only very light nuclei (protons) are involved in the reorganization of the
environment. We discard this possible situation.
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opposite in the adiabatic case; then it is the dynamics of the atoms which may be described
by an effective Hamiltonian (Born–Oppenheimer) while the electron dynamics is slaved to the
atomic motions. Let us recall now that the theory we consider does not focus on a specific limit
but treats all the intermediate situations between the adiabatic limit and the anti-adiabatic limit.

The energy surface considered in the Marcus theory (see figure 1) is defined for the donor
by HD({ui}) = H({ψα}, {ui , pi}) where ψα is fixed as |ψα|2 = 1 for α = D and ψβ = 0 for
β �= α (and pi = 0). Its minimum is obtained for {ui = ki,D}. The energy surface is obtained
identically for the acceptor by fixing |ψα|2 = 1 for α = A. Its minimum is obtained for
{ui = ki,A}. Then all the quantities involved in the standard Marcus theory can be calculated [9]
from (1).

HT({ψα}) is a real function which should be invariant on a global phase rotation of {ψα},
that is by changing {ψα} into {eiθψα}, where θ is arbitrary. It may be also considered as a
function of the electron densities {Iα = |ψα|2} and the phases θα (defined by ψα = √

Iαe−iθα ).
Since HT is 2π periodic with respect to each phase, it may be expanded as a Fourier series of
θα. Then HT can be written as a sum

HT({ψα}) = ĤT({|ψα|2})+ H int
T ({ψα}) (3)

where ĤT is the zero order component of this expansion which is independent of the phase of
the complex amplitudes ψα (it can be defined by averaging HT over the phases θα).

The rest of the energy H int
T in (3) depends on the phase θα of the complex amplitudes ψα .

It originates physically from the overlap of the redox orbitals. We consider situations where
this overlap is small (but however essential because this term is necessary for electron transfer).
Thus, we may keep only the lowest order nonvanishing terms of the Fourier expansion H int

T
which is second order because of the invariance of HT under global phase rotation. We thus
obtain the form

H int
T ({ψα}) = −

∑

β �=γ
λβ,γ ({|ψα|2})ψβψ�γ (4)

where λβ,γ ({|ψα|2}) = λγ,β({|ψα|2}) may be chosen real (in the absence of magnetic field).

4. Dynamical equation for electron transfer

We derive the effective equation which governs the ET after elimination of the thermal bath
of phonons considered as classical. We show that its effect is to dissipate energy and, at finite
temperature, to generate a random force as for the standard Langevin model. It is essential
however to take into account that the Fourier spectrum of the random force has a cut-off at
frequencies larger than the phonon frequencies for recovering the standard theory.

4.1. Hamilton equations

We write the standard Hamilton equations associated with (1),

ih̄ψ̇α = ∂H

∂ψ�α
= ∂HT

∂ψ�α
−
(
∑

i

ki,αmiω
2
i

(
ui −

∑

β

ki,β |ψβ |2
))

ψα (5)

0 = üi + ω2
i

(
ui −

∑

α

ki,α|ψα|2
)

; (6)
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ui (t) can be made explicit from the second equation (6) which is linear with respect to ui . The
general solution has the form ui = u(n)i + u(0)i , where

u(0)i (t) =
∑

α

ki,αωi

(∫ t

−∞
sinωi (t − τ )|ψα(τ)|2 dτ

)

=
∑

α

ki,α

(
|ψα(t)|2 −

∫ t

−∞
cosωi (t − τ )

d|ψα(τ)|2
dτ

dτ

)
(7)

and u(n)i = ai cos(ωi t −φi) is a solution with arbitrary amplitude ai and phase φi of (6) without
force (i.e. assuming |ψα|2 = 0). Substituting ui(t) as a function of |ψα|2 in equation (5) yields
the effective equation for the dynamics of the electron,

ih̄ψ̇α = ∂HT

∂ψ�α
+
(∫ t

−∞

∑

β

�α,β(t − τ )
d|ψβ(τ)|2

dτ
dτ + ζα(t)

)
ψα (8)

where

�α,β(t) =
∑

i

ki,αki,βmiω
2
i cosωi t (9)

and

ζα(t) = −
∑

i

ki,αmiω
2
i u(n)i (t). (10)

We define γα,β(ω) as

γα,β(ω) = π
∑

i

ki,αki,βmiω
2
i (δ(ω − ωi )+ δ(ω + ωi )) . (11)

If we assume that the environment plays the role of a thermal bath, that is the density of normal
modes i at frequency ωi in the interval dω is N(ω) dω, where N(ω) is a smooth integrable
function of ω = ωi , and that the coupling parameters ki,α and miω

2
i are also smooth integrable

functions kα(ω) and K (ω), we obtain that

γα,β(ω) = γα,β(−ω) = πkα(ω)kβ(ω)ω
2 N(ω) (12)

is a smooth function of ω. Its Fourier transform is the memory function

�α,β(t) = 1

π

∫ +∞

0
γα,β(ω) cos(ωt) dω = 1

2π

∫ +∞

−∞
γα,β(ω)e

iωt dω (13)

which may be assumed to be also a smooth function of time, which goes to zero at infinity.
Actually, it is important to note that, in physical systems, the phonon spectrum does not

extend to infinity and has a cut-off at some frequency ωc, that is N(ω) = 0 for |ω| > ωc. In
practice, h̄ωc cannot exceed the largest known phonon quanta energies, around 0.3 eV.

It can be readily checked that the operator g(ω) defined by the matrix element {γα,β(ω)} is
positive since K (ω) and N(ω) are positive functions.

Thermal fluctuations appear in equation (8) through the coloured random force (10). The
time correlation function averaged over τ of oscillator i is

〈u(n)i (t + τ )u(n)j (τ )〉τ = δi, j〈(u(n)i )2〉 cosωi t . (14)

If we assume that the harmonic oscillators are thermalized at temperature T , we have
〈(u(n)i )2〉 = kBT/(miω

2
i ), which yields the Langevin relation

〈ζα(τ )ζβ(t + τ )〉τ =
∑

i

ki,αki,βm2
i ω

4
i 〈u(n)i (τ )u(n)i (t + τ )〉

= kBT�α,β(t). (15)
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4.2. Energy dissipation at zero temperature

At zero temperature, the random force ζα(t) disappears ζα(t) = 0. Then, we have as a
consequence of equation (8)

ḢT =
∑

α

(
∂HT

∂ψ�α
ψ̇�α + ∂HT

∂ψα
ψ̇α

)

=
∑

α

(
ih̄ψ̇α − ψα

∫ t

−∞

∑

β

�α,β(t − τ )
d|ψβ(τ)|2

dτ
dτ

)
ψ̇�α + C.C.

= −
∑

α,β

d|ψα|2
dt

∫ t

−∞
�α,β(t − τ )

d|ψβ(τ)|2
dτ

dτ. (16)

The role of the thermal bath is essential for ensuring the dissipation of the energy released
by ET if it occurs at zero temperature. We show then that the dynamical equation (8) always
yields energy dissipation after a long time [9].

For simplicity, we may assume for example that �α,β(t) = γαδα,βδ(t), that is γα,α is
independent of ω and γα,β = 0 for α �= β . This approximation corresponds to the white

noise approximation for ζα by equation (15). Then, we find ḢT = − 1
2

∑
α γα,α(

d|ψα|2
dt )2 < 0

is necessarily negative because γα,α(ω) is obviously positive from its definition (11). However,
this white noise approximation is not correct physically.

Using the equation (A.2) and the approximation (A.11), we get a complex sum over
four indices α, β, γ, δ which involves time-dependent terms like Im(ψαψ�β) Im(ψγψ�δ ) or
Im(ψαψ�β)Re(ψγψ�δ ) where ψα(t)ψ�β(t) ≈ ψα(0)ψ�β(0)e

i(�β−�α)t . Then, time averaging of
Im(ψαψ�β)Re(ψγψ�δ ) yields zero while the time averaging Im(ψαψ�β) Im(ψγψ�δ ) is nonzero
only if γ = α and δ = β (we assume the nonresonance condition; that is, we never have
�β − �α �= �γ − �δ unless γ = α and δ = β). Then averaging the fast time periodic
oscillations to zero, we obtain

ḢT ≈ −
∑

α,β

λ2
α,β

h̄2
(γα,α − γα,β)|ψα|2|ψβ |2 = −1

2

∑

α,β

λ2
α,β

h̄2
(γα,α + γβ,β − 2γα,β)|ψα|2|ψβ |2

(17)

which is negative since the coefficient (γα,α + γβ,β − 2γα,β) calculated at frequency �α −�β
is positive according to the positivity of matrix {γα,β(�)} at any �. We note that the energy
dissipation is the sum of the contributions at each bond (α, β) of the current density (note
each bond appears twice in the sum (17) as α, β) and (β, α). Otherwise, we should remove
the prefactor 1

2 ). It is thus interesting to note for consistency that the same result (17) can
be obtained from equation (B.6) since the contribution to the energy dissipation due to each
bond (α, β) is the product of the average current J̄α→β by the electronic energy level difference
−(Eα − Eβ) which yields ḢT ≈ −∑

〈α,β〉 J̄α→β(Eα − Eβ) (each bond 〈α, β〉 appears only
once in this sum).

If all the electronic frequencies differences do not belong to the phonon spectrum, there
is no energy dissipation calculated at the lowest order. However, calculation at higher order
would involve integer combinations of the electronic frequencies

∑
α,β nα,β(�α − �β) with

nα,β integer. When there are more than two electronic frequencies, these integer combinations
yield a dense set of frequencies which necessarily overlap with the phonon spectrum (assuming
incommensurability). Thus, there is necessarily some energy dissipation which could be found
at some finite order expansion. However, this dissipation could become much smaller than
other sources of dissipation, for example by photon emission. It could be neglected in the limit

9
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of small transfer integrals and when the temperature is nonvanishing. This is the case in the
standard theory of ET.

4.3. Adiabatic limit

The adiabatic limit can be recovered by assuming that the cut-off frequency ωc is very small at
the scale of the electronic frequencies, that is γα,β(ω) ≈ π�α,β(0)δ(ω). Since the variations of
d|ψβ(τ)|2

dτ are very fast, �(t) = �(0) may be assumed to be time constant in equation (8). Then,
one readily obtains the adiabatic equation by explicit integration:

ih̄ψ̇α = ∂HC

∂ψ�α
+ ζα(t)ψα (18)

where

HC = HT + 1
2

∑

α,β

�α,β(0)|ψα|2|ψβ |2. (19)

It can readily be checked that HC({ψα}) is equal to the initial Hamiltonian (1) where the
atomic positions and momenta are fixed at ui = pi = 0. It is the electronic energy without
atomic reorganization. It is important to note that due to the capacitive energies of the charge
distribution, HC({ψα}) is not necessarily a bilinear function of {ψα} and {ψ�α}. Thus the
reorganization energy due to the electrostatic energy of the charge distribution is

Hreorg = HT − HC = − 1
2

∑

α,β

�α,β |ψα|2|ψβ |2. (20)

We also note that generally the general equation (equation (8)) may be written again after
part integration as

ih̄ψ̇α = ∂HC

∂ψ�α
+
(∫ t

−∞

∑

β

Gα,β(t − τ )|ψβ(τ)|2 dτ + ζα(t)

)
ψα (21)

where the memory function

Gα,β (t) = d�

dt
= −

∑

i

ki,αki,βmiω
3
i sinωi t = −

∫
kα(ω)kβ(ω)ωK (ω)N(ω) sinωt dω

represents the effect of the correction to the adiabatic approximation.

4.4. Recovering the standard Marcus theory

When the electron dynamics is much faster than the phonon dynamics, that is the differences
between the electronic frequencies are much larger than the phonon frequencies, the adiabatic
approximation becomes valid and we should use equation (18). The electronic state remains at
equilibrium with respect to its environment while it slowly varies. This feature is essential for
recovering the standard Marcus theory from our approach [9].

Then, since the transfer integral is small (and while there is no electronic resonance) the
electronic density remains peaked at α = D or A (for the two-site model), that is |ψα|2 ≈ 1
and |ψβ |2 ≈ 0 for β �= α. The total energy of the system evolves as a function of the
thermal fluctuations characterized by the reaction coordinates {ui} on the surfaces GD({ui}) =
ĤT(1, 0)+∑

i miω
2
i (ui − ki,D)

2 and GA({ui}) = ĤT(0, 1)+∑
i miω

2
i (ui − ki,A)

2 defined in
the standard theory (see figure 1). This approximation is valid while the electronic energies do
not approach resonances which would imply both that there are electronic frequencies entering
the phonon spectrum and the failure of the adiabatic approximation.

10



J. Phys.: Condens. Matter 19 (2007) 255204 S Aubry

Donor

Acceptor

ζD(t)

ζA(t)

electron
transfer

Δel

Donor

ζD(t)

Acceptor

ζA(t)

electron
transfer Δel

Figure 2. Time-dependent random fluctuations (induced by thermal lattice fluctuations) of the
adiabatic electronic levels of the donor E(ad)

D (t) and acceptor E(ad)
A (t) in normal regime (a) and

in the Marcus inverted regime (b). Within Marcus theory, ET occurs at time t where resonance
E(ad)

D (t) = E(ad)
A (t) occurs.

The adiabatic electronic frequencies �(ad)
α can be obtained from Hamiltonian (1) as

functions of the atomic coordinates {ui}. They can be equivalently obtained from equation (18)
at zero transfer integral

E (ad)
α = h̄�(ad)

α ≈ ∂ ĤC

∂|ψα|2 + ζα(t) (22)

where |ψα|2 = 1 and |ψβ |2 = 0 for β �= α and ĤC = ĤT − Hreorg does not involve
the reorganization energy due to the atomic motions (20). ζα(t) is essentially the potential
generated by the atomic displacements. Note that the adiabatic electronic levels E (ad)

α are
different from and systematically larger than the anti-adiabatic energy levels Eα obtained with
Hamiltonian ĤT in (22) instead of HC which takes the lattice relaxation into account.

At nonvanishing temperature, these electronic frequencies �(ad)
D and �(ad)

A slowly vary as
a function of time. When the random fluctuations make these adiabatic electronic levels equal,
we have a dynamical resonance, that is when

∂ ĤC

∂|ψα|2 (1, 0)+ ζD(t) = ∂ ĤC

∂|ψα|2 (1, 0)+ ζA(t), (23)

which may trigger ET (see the scheme in figure 2). However, when resonance occurs, the
adiabatic approximation ceases to be valid and electron tunnelling should be described with the
original equation (8). Nevertheless, we obviously recover the two situations, predicted by the
standard theory, called normal and inverted (see figure 2).

In the standard theory, electronic resonance should occur in the vicinity of the intersection
of the two energy surfaces GD({ui}) and GA({ui}); however, there are subtle problems already
discussed for the dimer model [9] because this electronic resonance does not necessarily occur
at the intersection between these two energy surfaces GD and GA. The intersection of the two
energy surfaces is obtained when

ĤC(1, 0)+ ζD(t) = ĤC(0, 1)+ ζA(t) (24)

which is a condition different from (23). A priori, these two conditions (23) and (24) are
nonequivalent because HC({�α|2) is the electronic energy without reorganization of the atoms
of the environment. It should be generally a nonlinear function of the electronic densities
because of the capacitive energies of the charge distribution (this is the energy of the local
electrostatic field which depends on the dielectric constant ε∞).

It was shown nevertheless in [9] that when the donor and the acceptor have the same
capacitive coefficients (and a fortiori when HC({�α|2) is a linear function of the electronic

11
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densities), electronic resonance precisely occurs at the intersection of the two energy surfaces
GD({ui}) and GA({ui}). This assumption may not be physically unreasonable in many cases.

Let us emphasize now that our theory does not consider the electron tunnelling as
a probabilistic process but intrinsically describes the quantum dynamics of the electron
wavefunction interacting with a bath of classical phonons. It should reproduce all the
predictions of the standard theory when they are valid and predict more where the standard
theory fails, that is in the vicinity of the inversion point.

5. Analytical and numerical investigations of specific models

We now apply our formalism for studying simple models and propose a new mechanism for
ultrafast catalytic electron transfer. First, we propose simple forms for the energies involved in
our model.

5.1. Main energy contributions to the nonlinear Hamiltonian for ET

Although equation (8) formally describes the electron dynamics in the general case, practical
applications require us to know precisely the anti-adiabatic Hamiltonian HT({ψα}) as well as
the damping functions �α,β(t). These terms involve in principle all interactions in the system
but their theoretical calculation would require for each specific and realistic example, expensive
ab initio numerical investigations.

Up to now we have studied models with only a few parameters. This is sufficient to make
clear the basic mechanisms for ultrafast electron transfer which could be extended to more
complex models. Considering that the molecules and the redox orbitals α of the different
electronic states α are weakly interacting, the anti-adiabatic Hamiltonian ĤT may be chosen as
separable, with the form

ĤT({|ψα|2}) =
∑

α

Hα(|ψα|2), (25)

where Hα(|ψα|2) is the energy of the isolated molecule or site α, which is only a function of its
electronic charge Iα = |ψα|2 with the form

Hα(Iα) = μα Iα + 1
2χα I 2

α , (26)

where μα is the electronic level of the unoccupied state (i.e., before reorganization of the
environment). The coefficient χα = χR

α + χC
α of the nonlinear term may be viewed as the sum

of two terms, where χR
α < 0 is the coefficient of the reorganization energy (20) and χC

α > 0 is
the coefficient for the capacitive energy (which depends on the local dielectric constant ε∞).

Thus, χα may be negative when the reorganization energy is prevalent (soft electronic
state) or positive when the capacitive energy is prevalent (hard electronic state). The capacitive
energy (χα > 0) is obviously prevalent for electronic states α which involve only small
reorganization energy of the environment (e.g. those corresponding to inner layers of metallic
ions). When the reorganization energy of electronic states is important, e.g. when they are
involved in covalent bonds, we generally have χα < 0.

We assume for simplicity that the transfer integrals λα,β in H int
T ({ψα}) (25) are small and

independent of the electronic densities. This dependence is not essential in our theory and can
be discarded.

Actually, a real system could involve cross capacitive and reorganization energy terms,
which are important for fine tuning (see the CEPO), but for simplicity, we do not include them
here.

12
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Assuming that we are close to the inversion point, the differences between the electronic
energy levels h̄�(ad)

α are comparable (and remain so while they vary) to the characteristic
phonon energies, which means that the phonon bath always remains efficient for generating
energy damping in the electron dynamics. Then, we may drop the details of the damping
functions �α,β(t) which again would affect quantitatively (but not qualitatively) the details of
the dynamics of ET and the rate of ET. We also assume for simplicity that the nonessential
off-diagonal terms �α,β are zero for α �= β . Finally, we can set �α,α(t) = 2γαδ(t)δα,β , where
γα,α = γα are constant.

Electronic energy differences are usually measured in electron-volts (eV). However, close
to the inversion point they should become much smaller and of the order of the largest phonon
energies, which are of the order of a few 10−1 eV. Nevertheless, the reorganization and
electrostatic energies can be counted in eV units, which make realistic coefficients χα of the
order of few units ×h̄. The small coupling parameters λα,β should be of the order of 10−2 × h̄
for reaching an absolute maximum speed for ET of a fraction of a picosecond. Thus their
energies lie in the range of thermal energies at room temperature TR (kBTR ≈ 3 × 10−2 eV).

ET at zero temperature requires that there is energy dissipation of the reaction energy and
thus the damping coefficients, γα , should not be negligible. However, both the damping and
the reorganization energy originate from the phonon bath and are related. Coefficient χR

α for
the reorganization energy is equal to −�α,α(0) because of equation (20). With the assumption,
γα(ω) = γα,β(ω)δα,β , it can be also assumed for simplicity that γα(ω) is constant with a cut-
off at ωc. Then, we get with equation (13), χR

α = −�α,α(0) = 2ωcγα/π . Thus the order of
magnitude we could expect for γα could be ≈−π h̄χR

α /(2h̄ωc). Considering a maximum for
the phonon energy h̄ωc of the order of 10−2 eV as above, we find that reasonable values for γα
could be of the order of several 10 × h̄, which turns out to be quite sufficient in our numerical
simulations.

5.2. The dimer model at zero temperature

We consider first the two-state donor–acceptor system (α = D or A). This model discusses
the situation where ET may occur at zero temperature between donor and acceptor because
the reaction energy can be dissipated through the phonon bath. This situation requires the
difference between the electronic levels on donor and acceptor remains within the phonon
energies and thus is relatively small.

Similar situations were considered by Jortner [6]. He assumed that the phonons are
quantum but also that the electron interaction with this quantum phonon bath is small so that
it can be treated as a perturbation through the Fermi golden rule. Actually, this treatment is
quite similar to those of the interaction of the electron with the quantum electromagnetic field
which describe the electronic relaxation by emitting a quantum photon. Although this quantum
treatment is justified for photon emission, we do not believe that a perturbative treatment of the
interaction with quantum phonons is physically relevant in most cases. The reason is that the
interaction of the electron with its environment generally generates an important reorganization
involving atomic displacements much larger than the width of their quantum zero point motion.
Thus, the interaction of the electron with the quantum phonon bath should be treated at very
high order which becomes a considerably more difficult task. Moreover, one should then
reasonably expect that the fully quantum calculation at strong interaction reproduces results
which are practically identical to those obtained from a simpler classical treatment.

With the above assumptions, the Hamiltonian HT of this dimer takes the form

HT(ψD, ψA) = μD|ψD|2 + 1
2χD|ψD|4 + μA|ψA|2 + 1

2χA|ψA|4 − λ(ψ�DψA + ψ�AψD) (27)

where constant λ is supposed to be small and real (and positive for fixing the ideas).
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Figure 3. Energy profiles εT(IA) versus electron transfer IA (defined by equation (30)) for different
values of μA when χD + χA < 0 (left) (soft anharmonicity) and when χD + χA > 0 (right) (hard
anharmonicity).

Then, at zero temperature (ζα = 0) we obtain from equation (8) two coupled equations

ih̄ψ̇α =
(
μα + χα|ψα|2 + γα

d|ψα|2
dt

)
ψα − λψβ (28)

where (α, β) denotes the pair (D, A) or (A, D), respectively. These two equations describe the
quantum tunnelling of the electron coupled with the phonon bath at zero temperature.

When the transfer integral is zero λ = 0, there is no coupling between the two units so that
|ψD|2 and |ψA|2 are time constant. Then, ψα(t) = e−iEα t/h̄ψα(0). The electronic energy level,
Eα , at site α depends on the electron densities |ψα|2:

Eα(Iα) = dHα

dIα
= μα + χα Iα. (29)

These energy levels are those of an electron which would tunnel very slowly (λ very small)
while the nuclei reorganize adiabatically then following the electron density (inverse Born–
Oppenheimer approximation).

Neglecting the small interaction energy in (27), the main contribution to the energy
variation εT(IA) = HD(1 − IA) + HA(IA) − HD(1) − HA(0) of the system (27) is only a
function of the electron density IA on the acceptor (since |ψD|2 + |ψA|2 = ID + IA = 1)

εT(IA) = (μA − μD − χD)IA + 1
2 (χA + χD)I

2
A. (30)

Figure 3 shows some possible profiles of εT(IA). The derivative of this curve with respect to
IA is the difference EA(IA) − ED(1 − IA) between the electronic energy level of A and D at
charge transfer IA. Consequently, there is electronic resonance EA(IA) = ED(1− IA)when this
curve has a horizontal slope. At the Marcus inversion point this slope is zero at zero transfer
(EA(0) = ED(1)), i.e., μA = μD + χD.

There are two possible situations which are qualitatively different. Either the curve εT(IA)

has negative convexity, i.e., χA +χD < 0 (figure 3 left) (soft dimer) or positive convexity when
χA + χD > 0 (hard dimer).

• When the dimer is soft (figure 3 left), which we believe to be physically the most common
case, the reorganization energy of the system is prevalent; there is an energy barrier in
the normal Marcus regime μA > μD + χD which disappears just at the inversion point
μA = μD + χD.3

3 This energy barrier is identical to those shown in figure 1 only when the capacitive terms χC
α vanish (see [9] for

details).
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Since the energy must decay because of the dissipation, ET will occur in principle as soon
as the energy barrier disappears. Actually, ET is globally faster just at the inversion point
because the initial resonance triggers ET. ET starts with a linear slope while beyond the
inversion point it needs a small initial perturbation (next growing exponentially (see [9] for
details). The observed dynamics confirms the existence of ET at the scale of picosecond
with physically reasonable parameters. The timescale of ET of course depends on the
damping constants γD and γA. Without damping, no ET may occur because there is
no energy dissipation. When the damping increases, the timescale decreases until it
reaches an optimum which roughly corresponds to the cross-over between underdamped
and overdamped. Next, for very large damping the timescale for ET diverges again.
Beyond the inversion point μA < μD + χD in the inverted regime, there is no initial
resonance and ET becomes slower for the reason we mentioned above. Moreover, when
the difference μD + χD − μA becomes larger than the phonon energy cut-off h̄ωc, the
phonon energy damping vanishes so that at zero temperature ET disappears. Actually, it
may occur but very slowly by photon emission (not treated in the model), which yields a
chemiluminescent ET reaction.

• When the dimer is hard (figure 3 right), ET does not occur at zero temperature, either in
the normal regime or at the inversion point, simply because the energy on the acceptor is
larger than the energy on the donor. When μA is below μD + χD, εT(IA) gets its energy
minimum at 0 < I m

A = (μD +χD−μA)/(χA +χD) < 1. Then ET occurs but is incomplete
while the ground state of the system is obtained at I m

A . The physical reason is that when
the electrostatic energy is prevalent, sharing the electron density on two sites may reduce
the total energy. Since the transfer integral is small, there are two quantum states where
ψD and ψA are in phase or out of phase which are close in energy, one of them being the
ground state4. WhenμD > χA+μA ET becomes complete because the minimum of εT(IA)

reaches I m
A = 1. Figure 4 shows an electron transfer versus time at zero temperature in an

example which is slightly beyond the inversion point. There is no energy barrier and the
electronic levels remains sufficiently close to each other in order that energy dissipation
can occur through the phonon bath. The electronic frequency �D − �A is visible in the
narrow oscillations which apparently broaden the curves.

5.3. Coherent electron–phonon oscillator (CEPO)

The special case where εT(IA) is a constant is especially interesting. In this situation, the
reorganization energy and the electrostatic energy exactly balance each other. Then, the
derivative of the energy variation εT(IA) with respect to IA is zero, which implies that the
electronic resonance �D = �A between the electronic levels of the donor and of the acceptor
persists all along the electron transfer. In this case, the reaction energy is zero but despite ET
becoming ultrafast, it is also reversible.

We could say a priori that this situation is identical to a standard linear tunnelling of an
electron between two degenerate electronic levels. However, there is an essential difference
because the tunnelling mode in our model is heavily coupled to its environment. Then, the
large electron density oscillation is accompanied coherently by a large amplitude reorganization
of the environment. Another essential consequence is that the degenerate electronic levels
oscillate as well with large amplitudes, which could have important consequences in the

4 This situation is quite different from the standard covalent bond in chemistry where the electronic density is shared
between two sites because of quantum tunnelling. Then, there is a bonding and an antibonding quantum state which
are separated by a large difference in energy (corresponding to twice the chemical bond energy).
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Figure 4. Electron density ID = 1/2− I on the donor and IA = 1/2+ I on the acceptor for a dimer
model beyond the inversion point in the marginal case between hard and soft (μD = 2, χD = −1,
μA = 0.8, χA = 1, λ = 10−2, γD = γA = 10).

system’s reactivity, as we shall see in the next section for trimer models. We call this new
mode a coherent electron–phonon oscillator (CEPO).

Let us note that this electron oscillation between two nonlinear electronic states is
analogous to the situation of targeted energy transfer between two weakly coupled anharmonic
oscillators described earlier [10, 11]. In that case, a numerical test has confirmed [12] that this
classical concept of targeted transfer persists when these anharmonic oscillators are considered
as quantum providing the energy transfer involving the creation and annihilation of many
quantum phonons. This remark supports the idea that the classical treatment of the phonon
bath is sufficient and physically correct in the case of a strong interaction of the electron with
its phonon bath.

When εT(IA) = 0, the Hamiltonian of this CEPO is reduced to the small interaction term
H int

T ({ψα}). Without damping, it describes a single nonlinear oscillator since this Hamiltonian
is integrable because of energy and norm conservation. With the special form chosen in
equation (27), H int

T = −λ(ψ�DψA + ψ�AψD), explicit calculations can be made which show
unusual properties for this anharmonic oscillator. Actually, in this specific example, it looks
like a harmonic oscillator but with a maximum amplitude which cannot be exceeded and a
variable damping which may be positive or negative but systematically operates in order to
bound the oscillation amplitude.

Considering the set of (real) conjugate action angle variables (Iα , θα) defined by ψα =√
Iαe−iθα , we define new conjugate variables by (θ = θA − θD, I = (IA − ID)/2) and

(θ0 = θA + θD, I0 = (IA + ID)/2). Using the norm conservation 2I0 = IA + ID = 1,
equation (28) becomes

h̄ θ̇ = λ
4I√

1 − 4I 2
cos θ + γ İ (31)

h̄ İ = −λ
√

1 − 4I 2 sin θ (32)
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where γ = γA + γD. These equations are those of a damped oscillator with Hamiltonian

H int
T = −λ

√
1 − 4I 2 cos θ. (33)

This model was exactly solved in the absence of damping in [10]. In our case, energy is not
conserved but we have

Ḣ int
T = −γ İ 2 < 0. (34)

Then, equations (33) and (32) yield

H int 2
T + h̄2 İ 2 = h̄2�2( 1

4 − I 2) (35)

with

h̄� = 2λ (36)

and then H int
T = F(I, İ ) = ±h̄

√
�2( 1

4 − I 2)− İ 2 is only a function of I and İ . Actually,

the sign of F(I, İ ) is the one of the coupling energy H int
T which is well defined because of

equation (34). F(I, İ ) is necessarily monotonically decreasing as a function of time. Thus, if
the sign of F(I, İ ) is initially negative it will remain negative at all times. If it is positive, it
will decay until it vanishes and then continue to decay negative. Then, the time differentiation
of equation (35) yields, using equation (34),

Ï − γ

h̄2 F(I, İ ) İ +�2 I = 0, (37)

which is the equation of a harmonic oscillator at frequency � with a damping parameter
− γ

h̄2 F(I, İ ) which depends on I and İ and may be positive or negative. If the initial energy is
positive (i.e., cos θ < 0 at time zero in equation (33)), the effective damping is negative, which
means that the amplitude of the harmonic oscillation increases while the coupling energy H int

T
decreases. When it vanishes, the sign of the damping is reversed so that the amplitude of
the oscillation decreases again until it reaches the energy minimum −λ of H int

T = F(I, İ ) at
I = İ = 0 (and cos θ = 1). Figure 5 shows the time evolution of a CEPO dimer with initial
conditions at its maximum amplitude.

The time oscillations of I are accompanied by large amplitude oscillation of the degenerate
electronic energy level on donor and acceptor since we have

ED(t) = EA(t) = μD + χD(
1
2 − I (t)) = μA + χA(

1
2 + I (t)). (38)

Since the (underdamped) frequency � of this CEPO (36) is determined by the small
coupling constant λ, it ranges in the phonon spectrum and could be experimentally confused
with a pure phonon mode. However, this low frequency oscillator is associated with a large
amplitude oscillation of the electronic density between two distant sites associated with a
large amplitude reorganization of the environment. This coherent mode involves collectively
the whole set of phonons without involving any specific phonon. It is not a normal mode.
Otherwise, because of the charge oscillation, it is highly polar and should be quite visible in IR
experiments. A CEPO is fragile because it requires a fine tuning of the donor–acceptor system.
Thus, minor mutations which change the parameters beyond the energy scale determined by
the small coupling energy λ destroy the CEPO. Applied macroscopic electric fields could also
change the fine tuning when they are sufficiently strong.

5.4. Catalytic ET at zero temperature with a CEPO

We now describe the catalytic effect of a CEPO on electronic reactivity. Let us consider an
electron on a D state that cannot be transferred to an A state (e.g. large energy barrier). We
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Figure 5. Electron density ID = 1/2 − I on the donor and IA = 1/2 + I on the acceptor when
the dimer is a coherent electron–phonon oscillator (CEPO) (μD = 2, χD = −1, μA = 1, χA = 1,
λ = 10−2, γD = γA = 1).
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Figure 6. Principle of ET with a coherent electron–phonon oscillator: two weakly coupled
molecular units (donor and catalyst) generate a CEPO. This system is weakly coupled to a third
unit, the acceptor (left scheme). An electron initially on the donor generates an oscillation of the
electronic level of the CEPO. If the bare electronic level of a third molecular unit (acceptor) is
included in the interval of variation, as soon as resonance between the CEPO and the acceptor is
reached, ET is triggered irreversibly to the acceptor (right scheme).

show that in the presence of a third ‘catalyst’ state, C, which is tuned to D in order to form a
CEPO, ET between D and A may become extremely efficient and ultrafast.

Figure 6 shows a scheme of the principle for catalytic electron transfer.
Let us assume that the donor state initially receives an electron, for example by

photoexcitation, which raises a lower energy electron up to this D state. Its electronic level
varies as a function of its occupancy because of the reorganization of the environment and
electrostatic energy. When it reaches full occupancy, the donor electronic level becomes
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resonant with the unoccupied electronic level of the catalyst. As explained above, the CEPO
is then at maximum amplitude. Slow electronic level oscillations are generated on the system
donor–catalyst. Then, if a third unoccupied electronic site with an electronic level in the interval
of variation of the CEPO is present and weakly coupled with the system donor–catalyst, a
resonance is shortly established during the first oscillation.

Then, assuming a small but nevertheless sufficiently large coupling, a substantial part of
the electronic density flows to the acceptor. As a consequence, the electronic density on the
CEPO is reduced, which immediately interrupts the oscillation because the resonance donor–
catalyst is detuned. Since there has already been a substantial energy dissipation, the electron
cannot return to its initial state. As a result, the electronic state is forced to flow to a final
state which is a local minimum of the energy. If the nonlinear parameters of the acceptor are
appropriately chosen, the only accessible minimum of energy could correspond to the whole
electron density on the acceptor.

There are two stages in this catalytic ET process. First, the triggering of the resonance
to the acceptor is ultrafast because it occurs within less than half a period of oscillation of the
CEPO. Second, ET to the acceptor continues, initially fast but then slowing down as a function
of transfer because the electronic resonances disappear. However, energy dissipation makes the
transfer to the acceptor irreversible and thus it is forced to terminate after some longer time.

5.5. Ultrafast ET on a trimer model

We illustrate these principles on the trimer model with Hamiltonian

HT({ψα}) =
∑

α=D,C,A

μα|ψα|2 + 1
2χα|ψα|4 −

∑

α �=β
λαβψ

�
αψβ. (39)

Using the action angle coordinates defined as above, ψα = √
Iαe−iθα , the dynamical

equations (8) of this system with damping at zero temperature and with the assumptions
described in section 5.1 become

h̄ İα = −2
∑

β

λα,β
√

Iα Iβ sin(θα − θβ) (40)

h̄ θ̇α = Eα +
∑

β

λα,β

√
Iβ
Iα

cos(θα − θβ)+ γα İα (41)

where Eα = h̄�α = μα +χα Iα . We consider a situation where the energy of the electron on A
is lower than on D and such that there is an energy barrier as shown in figure 3. In this situation

χA + χD < 0 (42)

muA + 1
2χA < μD + 1

2χD. (43)

In the absence of a catalyst, (IC = 0 or ID + IA = 1), ET is not possible at zero temperature.
We now show that the presence of a catalyst may induce ultrafast ET.

Neglecting the small coupling constants λα,β , and using the CEPO conditions μC =
μD + χD, χD = −χC, the energy variation εT(ID, IA) = HD(ID) + HC(IC) + HA(IA) −
HD(1)− HC(0)− HA(0) is only a function of ID and IA, since ID + IC + IA = 1

εT(ID, IA) = (μA − μD)IA − χD IA ID + 1
2 (χA − χD)I

2
A (44)

where 0 � ID � 1, 0 � IA � 1 and ID + IA � 1. We have
∂εT

∂ ID
(ID, IA) = ED(ID)− EC(1 − IA − ID) = −χD IA (45)

∂εT

∂ IA
(ID, IA) = EA(IA)− EC(1 − IA − ID) = μA − μD − χD ID + (χA − χD)IA. (46)
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Figure 7. 3D plot of the energy surface εT(ID, IA) defined by (44) versus IA and ID and contour
lines in projection for an example where conditions (42), (43) and (47) are fulfilled (μD = 2,
χD = −1, μC = 1, χC = 1, μA = 1.5, and χA = −0.75). The triple resonance point S and
the resonance lines DDC, DDA and DCA are also shown (dashed lines). The electron path (real and
averaged) is schematically represented.

The extrema of this two-variable function are obtained when the electronic energy levels of the
three sites are equal. The first equation requires IA = 0, and then the second equation yields
μA = μD +χD ID. This equation can be fulfilled only if μA belongs to the interval of frequency
variation of the CEPO which yields

μD + χD � μA � μD if χD < 0 or (47)

μD � μA � μD + χD if χD > 0. (48)

When both conditions (42) and (43) and one of the conditions (47) and (48) are fulfilled, the
energy surface (44) appears as shown in figure 7.

There are three resonance lines:

• DDC defined by ED = EC which yields IA = 0 from equation (45);
• DCA defined by EC = EA which yields −χD ID + (χA − χD)IA = μD − μA from

equation (46);
• DDA defined by ED = EA which yields −χD ID + χA IA = μD − μA from equations (45)

and (46).

DDC, DCA and DDA intersect at the same point with coordinates S = (ID = IS, IA = 0)
with 0 < IS = (μA − μD)/χD < 1.

Moreover, εT(ID, IA) is constant and zero on the resonance line DDC where IA = 0 at
the edge of the domain of definition. It is also constant and zero on the line (D0) defined
by −χD ID + 1

2 (χA − χD)IA = μD − μA. The intersection point (S) is a saddle point of
the surface. Along the other edge on the line ID + IA = 1 from (D) to (A), εT exhibits an
energy barrier, increasing first from zero and then decreasing below zero with a maximum
εm

T = −(μD + χD − μA)
2/(2(χA + χD)) > 0 at IA = 1 − ID = (μD + χD − μA)/(χA + χD)

while on the other border line ID = 0, joining (C) to (A), εT is monotonically decreasing.
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Figure 8. Electron density on donor (solid), acceptor (dashed), and catalyst (long dashed) versus
time in the trimer model (39) where μD = 2, χD = −1, μC = 1, χC = 1, μA = 1.5, χD = −0.75,
λDA = λAC = λDC = 10−2 and γD = γC = γA = 10 (units are supposed to be eV).

At zero damping, the trimer Hamiltonian (28), which has 3 + 3 degrees of freedom, is
not integrable because there are only two time invariants: only the total energy and the total
norm are conserved. However, it is trivially integrable at zero coupling. Then, in the weakly
coupled system, most of the nonresonant solutions are preserved as Kolmogorov–Arnol’d–
Moser (KAM) tori. Narrow chaotic regions (Arnold webs) located close to the resonance
points, appear but are generally confined and negligible. However, in our case and because
the donor and catalyst form a CEPO, an extended Arnold web appears along the edge line DDC

where there is both resonance ED = EC and constant energy. Indeed, as shown in [18], at zero
damping, with an initial state where the electron is on the donor, the trimer system exhibits large
amplitude chaotic trajectories mostly in the vicinity of the saddle point S, unlike the isolated
dimer donor–catalyst which is integrable. Obviously, in this case, no complete and irreversible
ET may occur at zero damping because the reaction energy cannot be dissipated.

When there is damping, this chaotic behaviour persists transiently but tends to disappear in
the limit of strong damping. This is the origin of the small random-looking oscillations which
are visible in figure 8.

Figure 8 shows an example of numerically calculated transfer of an electron with
equation (28) extended for the trimer. Considering the electron initially on the donor, the
CEPO oscillation is initiated and the electron density starts to flow toward the catalyst only
and close to the edge line DC. Then, arriving in the close vicinity of the saddle point5, the
resonance with the acceptor becomes effective and the electron density starts to flow to the
acceptor. Since some energy has already been dissipated, the electron cannot return to the
edge line and has to move with its own dynamics to the unique minimum of the surface on the
acceptor. The electron density on the catalyst reaches a maximum which does not correspond

5 In the case when the CEPO is overdamped, the trajectory might not reach the saddle point if IS < 1/2 at strictly
zero temperature. However, small thermal fluctuation would be enough to reach it.
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Figure 9. Electron density on donor (solid), acceptor (dashed), and catalyst (long dashed) versus
time in the trimer model (39) at zero temperature, where the parameters are the same as in figure 7
except that μC = 1.0112. The CEPO donor–catalyst has been slightly detuned and ET is retarded.
For larger values of μC, the electron mostly remains on the donor and there is no ET.

to a full occupation and decays to zero while simultaneously the electron density on the donor
continues to decay to zero.

The role of the CEPO formed by the weakly coupled donor–catalyst system is to trigger
ET from that system to the acceptor even at zero temperature, while in the absence of the small
perturbation induced by the catalyst, direct ET from donor to acceptor is impossible at low
temperature because of the existence of a large energy barrier.

Small perturbations which detune the CEPO have drastic consequences on ET. Actually,
the trimer model may be viewed as a molecular transistor. For example, if the difference
between the energy levels μC − μD on the donor and the catalyst is increased from its optimal
value by a small amount, the CEPO oscillation is sharply killed, which immediately blocks ET
to the acceptor. The example of ET shown in figure 9 concerns the same model as figure 8,
but μC has been increased to a value very close to the threshold where ET become blocked
μ
(c)
C ≈ 1.0115. It is clearly visible that ET to the acceptor lasts much longer than ET at the

optimum value of μC.
Actually, the effect of the local electric field variation is asymmetric. If, in contrast,

μC − μD is decreased, the CEPO system becomes a donor–acceptor system in the inverted
regime, as for example the one shown in figure 4. The electron starts to transfer to C but more
slowly than for the optimized CEPO and next to the final acceptor A. As a result ET is not
blocked but is substantially slows down.

This local perturbation of the CEPO could be obtained by an electric field at the
microscopic scale which may be either generated by minor permanent ‘mutations’ of the system
(poison) or produced transiently by particular charged molecules which could be used for
regulating the system by binding at specific sites during a certain time in a close vicinity of
the CEPO, thus producing a local electric field. In conclusion, it appears that ultrafast catalytic
ET could be controlled by weak external perturbations at the nanoscale level and thus could be
used as part of logical devices in living cells.
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6. Discussion of ET in the PRC

Subpicosecond oscillations in the PRC [17] have been observed [13], and they demonstrate
the existence of a coupling between ET and coherent vibrational motions [14]. However,
it is still unclear what the reason for these oscillations is or whether they are connected to
ET. Quantum chemical methods have been used to calculate wavefunctions, energies and
coupling parameters. It has been confirmed that there is indeed an increase of electron density
on BA during some time after the excitation of P (see references in [16]). Recently more
accurate quantum chemical calculations [16] of the PRC have been performed by solving
the time-dependent and time-independent Schrödinger equations. It is shown that there is an
important change of geometry of the special pair dimer from neutral P� to ionized P+ while
the reorganization of BA from neutral to ionized is small. Moreover, there are a number of low
frequency normal modes of P which are clearly coupled to the primary charge separation. It is
suggested that (mainly) the oscillating charge of the acetyl group modifies the relative energies
of the local LUMOs. Otherwise, it is mentioned that there is experimental and theoretical
evidence that the primary charge separation is activationless. It is also noted that the energy
of P+ − B−

A is strongly correlated to the rate of electron transfer. The maximum efficiency is
obtained when this energy is slightly below the energy of P� − BA. These features seem to
be qualitatively in quite good agreement with the predictions of our theory when assuming the
system P� − BA is a CEPO.

Actually, our approach starts from fundamental considerations about ET which are valid
in general and are not specific to a particular physical system. It is based on the remark that
in the vicinity of the Marcus inversion point (i.e., specifically in the region where ultrafast
ET may occur), electron and phonon dynamics have a comparable timescale. Thus, the
standard theory, which assumes the adiabatic approximation, cannot properly describe ET in
this regime, not even with some perturbative corrections, because ultrafast ET is intrinsically
a nonadiabatic phenomenon. Our theory uses basically the same general framework and the
same hypothesis as the standard theory (classical harmonic phonons) except that it discards
the adiabatic approximation by keeping the electronic variables independent of the atomic
variables. Thus, our theory can fully describe the electron dynamics in all cases when it is
almost adiabatic or when it becomes nonadiabatic and intricate with the phonon dynamics as
well.

The classical harmonic phonon field is formally eliminated through exact transformations
and then manifests itself through the nonlinearities, random forces, and memory kernels in
an effective extended Schrödinger equation describing the electron dynamics. With some
reasonable simplifications (considering the nonlinearities at lowest significant order and weak
coupling), our model only involves a few essential parameters which are physically significant.
We consider these parameters given but they could be obtained from ab initio calculations
or/and experimental data for each specific situation of ET.

Since the phase of the electronic wavefunction and of the phonon oscillations is
intrinsically involved in electron dynamics, our theory can describe coherent ET (nonlinear
tunnelling) which may occur at low temperature and incoherent ET when the temperature (and
thus the random force) becomes large, as well as in intermediate regimes.

Optimizing the rate of ET naturally leads us to consider the dimer model at zero
temperature where reorganization energy and capacitive energy just balance in order to get
faster ET, i.e., when there is no energy barrier at all intermediate ET. This situation requires
more conditions than just being at the Marcus inversion point. Then, this optimized ET is
precisely activationless and is associated with large amplitude coherent phonon oscillations, but
it is also reversible. Because of that, it is not physically efficient in itself but as we explained,
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electronic level oscillations are generated and may trigger ET to a third site, thus removing the
large energy barrier for direct ET from the first site. This trimer model appears as the simplest
possible device for obtaining both ultrafast and irreversible ET. More complex models could
also be described with our approach but are left to further investigations (logical devices?).

The physical consequences of our theory are far from having been explored in detail. In
particular, further investigations are required for understanding how the thermal fluctuations
(represented by the random force ζα(t) in equation (8)) smear out the zero temperature
coherent phenomena and exactly how this theory connects to standard theory when temperature
increases.

Nevertheless, at the present stage it is worthwhile noting that the observed features in
the photosynthetic reaction centre (PRC) described in the introduction have strong qualitative
similarities with our findings in the trimer model with CEPO.

The excited dimer of bacteriochlorophylls P� and the ancillary bacteriochlorophyll BA

of the A branch form a well-tuned coherent electron phonon oscillator (CEPO). This seems
to be supported by the findings of [16] mentioned above. The fine tuning of the CEPO
requires conditions on both linear and nonlinear coefficients on P� and BA. It suffices that
the coefficients for BB on the second branch B be slightly different (of the order of the small
coupling parameter λ) in order to detune the possible CEPO on P�−BB and make the B branch
not involved in ET. We have confirmed this claim by numerical tests on slightly asymmetric
two-branch systems, where only branch A with a well-tuned CEPO is involved in ET. Branch
B is not involved and the system may be reduced to the A branch only (P� − BA − HA) as a
trimer model D–C–A described above. Our theory yields some predictions at zero temperature
in qualitative agreement with the observations. In the natural system, ET should be triggered
to the acceptor (the nearest bacteriopheophytin HA) at the resonance of the CEPO with the
acceptor, which occurs during the first half period of its oscillation. At this instant, we have
triple resonance between the three electronic levels on P�, BA, and HA. Then, electron transfer
to the catalytic site BA is only partial. Next, it stops and is reversed. ET on the catalyst BA

should be observable partially and only during a short transient time. During the second stage,
ET occurs globally between the pair P� − BA (donor–catalyst) and the acceptor BA but then
electronic resonances gradually disappear. ET slows down on the acceptor. The consequence
is that ET versus time is nonexponential. If the acceptor is removed or if its electronic level
is shifted out of the interval of energy where there are electronic level oscillations (which may
occur in mutated PRC), the amplitude of coherent electron–phonon oscillation of the CEPO is
magnified because it is not interrupted any more at the triple resonance with the acceptor. The
CEPO oscillations should last longer with a larger amplitude than when ET occurs.

This UFET can be easily affected by small mutations which change the tuning of the
CEPO. It is even possible to make mutations which produce slower ET along the B branch if
the mutated A branch is blocked. Then, we should consider the role of temperature restoring
some efficiency as a CEPO of the second pair P� − BB.

Although large macroscopic electric fields correspond microscopically to small relative
energy shifts between electronic levels, these shifts may become of the order of the small
coupling (transfer integral) of the CEPO and, depending on the sign, may block or slow down
ET. This is also easily confirmed numerically within the simple model treated here.

Let us recall that our predictions are made for zero temperature. Although no systematic
numerical investigations of the same model at finite temperature (with a nonzero random force)
have been carried out, we suggest that the effect of the random force will be to reduce the
phase coherence in the CEPO, generating stochastic large amplitude oscillations and retarding
the occurrence of the triple resonance. The net consequence is that the rate of ET slows down
when increasing the temperature.
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In contrast, if the CEPO is not well tuned, it should not exhibit any substantial charge
oscillations at zero temperature. However, at relatively small temperature the fluctuations of the
random force could restore the resonance intermittently (as in standard Marcus theory), thus
inducing large charge fluctuations that trigger ET to the acceptor. Finally, we expect that well-
tuned and slightly not-well-tuned CEPOs become equivalent at sufficiently high temperature
(of the order of the detuning energy).

A well-tuned CEPO may appear as physically exceptional in general because it requires
specific parameter relations. Nevertheless, we think CEPOs could be very common in
biosystems because of their ability to induce highly selective chemical reactions. It has been
already noted that coherent phonon oscillations are often observed [15], although they are not
well identified. CEPOs could be found in single macromolecules (enzymes) or be formed by
the association of two biomolecules in appropriate configuration by key–lock principle. One of
their essential properties is that they may be easily tuned or detuned by small perturbations of
the environment which may change their parameters. As a consequence, their biochemical
function could be inhibited or amplified, according to minor but specific changes of the
environment, e.g., changes in the protein conformation, in pH or ion concentration, adsorption
of extra molecules, etc.

Because of their ability to produce UFET, the concept of CEPOs could be an essential
paradigm for understanding the physics of the complex machinery of living systems.
Furthermore, they could be involved in networks of electronic states for forming complex
logical devices, either natural or artificial.

7. Concluding remarks

We proposed here a nonadiabatic theory for ET which becomes useful in the vicinity of the
Marcus inversion point where electron transfer is expected to become ultrafast.

Our approach initially consists of considering the complex amplitudes of the tight-binding
electronic wavefunction as extra reaction coordinates. Thus the dynamics of the electron is not
slaved by the adiabatic approximation to the dynamics of the environment. Then, we show
after exact elimination of the atomic variables that the electron dynamics can be described by
an effective equation which is a discrete nonlinear Schrödinger equation with extra dissipative
terms and coloured Langevin forces describing the thermal fluctuations. The advantage of our
approach is that the electron dynamics may involve coherent behaviour when some conditions
are fulfilled and then its tunnelling should be described as a probabilistic process as assumed in
early theories.

It is close to the inversion point where electron transfer is supposed to occur at zero
temperature that our model reveals an important difference with the standard approach. We
obtain in particular nonexponential transfer with long tails. The most interesting result is that
our model naturally suggests the possible existence of coherent electron phonon oscillators
(CEPOs).

A CEPO is a two-site system which is finely tuned in order the atomic reorganization
energy and the electrostatic energy almost balance one with each other. Then, the energy
barrier for electron transfer between the two sites is flattened. The result is that despite the
electronic levels changing during ET, the electronic resonance persists at any transfer. Since ET
is then obviously reversible, there is a coherent electronic oscillation similar to those between
two resonant electronic levels. The important novelty of this oscillation is that it may become
highly nonlinear when it involves both a collective motion of the atoms and a spatial oscillation
of the electronic charge. Then, the electronic level of the electron on the CEPO oscillates at the
same frequency.
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The oscillations of the electronic level of a CEPO could be used for triggering ultrafast
and catalytic electron transfer of the electron of the CEPO towards an acceptor by catching
the resonance with its LUMO. This CEPO is formed by interaction of the donor site with a
catalyst site. In the absence of a catalyst site, the CEPO does not exist and no ET could occur
towards the acceptor (at low temperature). Such a chemical reaction may be easily controlled
by small perturbations of the CEPO formed by the donor–catalyst system. It appears that this
trimer model behaves like a transistor since small change in the electrostatic environment of the
CEPO may block the electron transfer between the donor and the acceptor. Such small changes
are physically rather easy to induce by mutations or transient binding of specific charged
molecules, and also change in the local dielectric constant which may be induced by the solvent
(pH, . . .) etc.

The concept of CEPOs was extended to multisite chains for inducing polaron mobility [20]
as a model for signal transmission in enzymes. We used similar ideas in a very different context
for improving bipolaron mobility by depressing its Peierls–Nabarro energy barrier due to the
well-tuned competition between electron–phonon coupling and electron–electron repulsion by
a Hubbard term [21].

This new theory needs more developments. First, only results valid at low temperature
were presented. Although the thermal fluctuations were formally included in the effective
dynamics of the electron as a random force their effect was not precisely studied. Further
study will be necessary to investigate how thermal fluctuations affect and finally destroy the
coherence effect allowing ultrafast ET and finally how the standard ET theory is recovered at
high temperature. Second, the parameters for the example we treated were chosen empirically
in a range which looks physically realistic. It might be possible to determine those parameters
in specific example by ab initio numerical calculations and to check if, in some cases, their
values could generate CEPOs. Otherwise, our theory predicts many qualitative consequences
of the existence of CEPOs which could be experimentally checked in systems where they may
be suspected to exist.

Appendix A. Approximate equation for the electron dynamics at small transfer integral
and low temperature

We show that equation (8) may be approximated by a differential equation without retarded
interaction. First, the last term of equation (8) can be expressed as a function of {ψα} which
involves the currents without time derivatives. It readily turns out from equation (8) that

d|ψα|2
dt

= ψ�αψ̇α + ψαψ̇
�
α = i

h̄

(
ψα
∂HT

∂ψα
− ψ�α

∂HT

∂ψ�α

)
(A.1)

can be replaced by a function of {ψα} without time derivatives. Since we assumed in
equation (3) that HT = ĤT({|ψα|2})−∑

β �=γ λβ,γ ({|ψα|2})ψβψ�γ , it turns out that the electron
density variation at site α is equal to the sum of the entering density currents from the other
sites β ,

d|ψα|2
dt

=
∑

β

Jβ→α = 2
∑

β

λα,β

h̄
Im(ψαψ

�
β) (A.2)

where the density current from site β to site α is

Jβ→α = i

h̄
λα,β({|ψγ |2})(ψ�αψβ − ψαψ

�
β) = 2

λα,β

h̄
Im(ψαψ

�
β) = −Jα→β . (A.3)
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Since λα,β is supposed to be small, the variation of the electron density is slow and only
varies over the timescale of h̄/λα,β . We also assume that the random force 〈ζα(t)〉 is small,
of the order of or smaller than the transfer integral energies λα,β , that is the temperature
kBT�(t) < ≈λ2

α,β is small enough. Then, neglecting all the terms of order λα,β small in
the second member of equation (8) yields the set of equations

ih̄ψ̇α ≈
(
∂ ĤT

∂|ψα|2
)
ψα (A.4)

which yields the approximate solution ψα(t) = ψα(0)e−i(�α t), where |ψα|2 is time constant
and

�α = 1

h̄

∂ ĤT

∂|ψα|2 (A.5)

is a function of {|ψα|2}. Thus using equation (A.3), we have
∫ t

−∞
�α,β(t − τ )

d|ψβ(τ)|2
dτ

dτ = 2
∑

γ

λβ,γ

h̄

∫ t

−∞
�α,β(t − τ ) Im(ψβ(τ )ψ

�
γ (τ )) dτ. (A.6)

We have
∫ t

−∞
�α,β(t − τ ) Im

(
ψβ(τ)ψ

�
γ (τ )

)
dτ = Im

(∫ t

−∞
�α,β(t − τ )ψβ(τ )ψ

�
γ (τ ) dτ

)

≈ Im

(
ψβ(0)ψ

�
γ (0)

∫ t

−∞
�α,β(t − τ )ei(�γ−�β)τ dτ

)

= Im

(
ψβ(t)ψ

�
γ (t)

∫ ∞

0
�α,β(x)e

−i(�γ−�β)x dx

)
. (A.7)

We decompose
∫ ∞

0
�α,β(x)e

−i�x dx = 1
2 (γα,β(�)+ iσα,β(�)) (A.8)

into its real and imaginary parts, where γα,β(�) is obtained from equation (13) and σα,β(�) is
related to γα,β(�) through a standard Kramers–Kronig relation

σα,β(�) = 1

π

∫ +∞

−∞
γα,β(�

′)
�′ −�

d�′ = lim
ε→0+

1

π

∫ +∞

−∞
γα,β(�

′)
�′ −�

ε2 + (�′ −�)2
d�′. (A.9)

Consequently, equations (A.7) and (A.8) yield
∫ t

−∞
�α,β(t − τ ) Im

(
ψβ(τ)ψ

�
γ (τ )

)
dτ ≈ 1

2γα,β(�γ −�β) Im
(
ψβ(t)ψ

�
γ (t)

)

− 1
2σα,β(�γ −�β)Re

(
ψβ(t)ψ

�
γ (t)

)
(A.10)

which yields with equation (A.6)
∫ t

−∞
�α,β(t − τ )

d|ψβ(τ)|2
dτ

dτ ≈ 2
∑

γ

λβ,γ

h̄

∫ t

−∞
�α,β(t − τ ) Im(ψβ(τ )ψ

�
γ (τ )) dτ

≈
∑

γ

λβ,γ

h̄

(
γα,β(�γ −�β) Im

(
ψβ(t)ψ

�
γ (t)

)

− σα,β(�γ −�β)Re
(
ψβ(t)ψ

�
γ (t)

))
.

(A.11)
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�α are functions of the electron densities {|ψα|2} defined by equation (A.5). �α,β(t) is
supposed to be known with a frequency cut-off which defines functions γα,β(�) and σα,β(�).
Thus by substitution of (A.11) in equation (8), this equation can be approximate at low
temperature and λα,β small as a set of simple differential equations with the global form
ih̄ψ̇ = F(ψ,ψ�) without any retarded interaction. Despite the expanded form of this equation
being tediously long, its advantage is in being much simpler for numerical integrations when
the temperature is low.

Appendix B. Equation for the charge currents out of resonance at zero temperature

We go beyond the previous equation which involves both the amplitude and the phase of the
electronic amplitudes. We derive an explicit, smooth equation for the dynamics of the electron
densities (where the phases are eliminated by averaging the fast electronic oscillations) which
as in the previous case is valid at zero temperature and at small couplings λα,β assumed to be of
the order of λ. This equation describes the current flow when the dissipation of energy during
electron transfer may occur by (classical) phonon emission, that is when on the one hand the
differences between the electronic energy level do not exceed the phonon energies h̄ωc, and on
the other hand, these differences remains larger than the transfer integrals λ.

This equation only concerns the averaged charge current flows and does not involve the
phases θα. It describes only the incoherent dynamics of the system out of resonance and thus
is not valid in the vicinity of the resonance lines Dα,β , where Eα = Eβ for all pairs α, β . It is
thus not valid at the first stage of the ultrafast ET described above, when the ET dynamics is
coherent, i.e., when the electronic charge is on donor and catalyst, but it is valid for the final
stage of ET. Using equation (A.11), equation (8) yields for the action angle variables Iα and θα
defined as �α = √

Iαe−iθα ,

h̄θ̇α = Eα +
∑

β,γ

λβ,γ

h̄

√
Iβ Iγ

(
γα,β sin(θγ − θβ)− σα,β cos(θγ − θβ)

)

−
∑

β

λα,β

√
Iβ
Iα

cos(θα − θβ) (B.1)

h̄ İα = −2
∑

β

λα,β
√

Iβ Iα sin(θα − θβ). (B.2)

For that purpose, we define Īα as

Īα = Iα − 2

h̄

∑

β

λα,β

√
Iα Iβ

θ̇α − θ̇β
cos(θα − θβ) (B.3)

so that equation (B.2) yields

h̄ ˙̄I α = −2
∑

β

λα,β
d

dt

( √
Iα Iβ

θ̇α − θ̇β

)
cos(θα − θβ). (B.4)

When there is no resonance, that is |Eα − Eβ | for α �= β is much larger than the transfer
integrals |λγ,δ|, and since then θ̇α ≈ �α = Eα/h̄, the fluctuations around Īα in equation (B.3)
are fast at frequency (Eα − Eβ)/h̄. Their amplitude at coupling of order λ is small at any time
and thus this term does not contribute on average to the large amplitude variation of Iα involved
in ET. Thus, the electron transfer is essentially described by Īα .

Equation (B.1) yields the time derivatives θ̇α and θ̇β as functions of {Iα, θα}, as well
as equation (B.2) for İα . Then, it turns out after time derivation and substitution of the
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time derivatives θ̇α and İα that ˙̄I α is a function of the set of variables {Iα} and {θα} and is
of order 2 in λ. It is not necessary to calculate explicitely all the terms coming from the
derivative in equation (B.4). It will contain essentially a combination of sine products like
λα,βλα,γ cos(θα − θβ) cos(θα − θγ ) or λα,βλα,γ cos(θα − θβ) sin(θα − θγ ) with prefactors which
are functions of {Iα} with slow time variations.

Since the set of electronic frequencies {�α} does not involve any resonance, most terms of
this expansion have fast time periodic variations which average to zero. The only terms which
do not average to zero have the form cos2(θα − θβ), which average to 1/2. These terms are
essentially provided by those which depend on the damping parameters γα,β in the second time

derivatives θ̈α . Then, keeping only those terms, it turns out that the average 〈 ˙̄I α〉 over times
long at the scale of the fast fluctuations but short at the order 1/λ2 becomes

〈 ˙̄I α〉 ≈ −
∑

β

J̄α→β (B.5)

where J̄α→β is the averaged charge current from α to β along the bond α, β . This formula is
similar to equation (A.2) but it concerns the averaged current and densities. We have at leading
order in λ

J̄α→β = − J̄β→α ≈ λ2
α,β

h̄2

γα,α + γβ,β − 2γα,β
Eα − Eβ

Īα Īβ. (B.6)

These parameters γα,β are calculated at frequency �α − �β = (Eα − Eβ)/h̄. This sum
γα,α + γβ,β − 2γα,β is necessarily positive because of the positivity of operator with matrix
element γα,β(�) at any �.

We note that the bond current along the bond α, β is zero when the damping coefficients
are zero at the corresponding frequency. This result should be expected because formula (17)
shows the absence of energy dissipation in the same conditions.

Moreover, at zero damping and zero transfer integral, the trimer model is integrable and all
its orbits are quasiperiodic tori (or exceptionally periodic). When the transfer integrals are small
but nonzero, the Kolmogorov–Arnol’d–Moser (KAM) theory predicts that the nonresonant
quasiperiodic tori persist as quasiperiodic orbits (KAM tori) where Iα is a quasiperiodic
function of time which cannot vary on average. In the absence of damping, perturbation
calculations at lowest order essentially approximate these KAM tori.

The direction of the current in the bond α, β is to flow from the highest electronic energy
level towards the lowest electronic energy level, which is reasonable because of the energy
dissipation. The current density increases when the energy level approaches resonance. In the
case of resonance, the current diverges at the resonant bonds Eα = Eβ , but this is an artefact
of our approximation of incoherent phase which is only valid in the absence of resonance. In
that case, the electron dynamics becomes coherent and faster at order λα,β instead of λ2

α,β .
This formula also shows that when this energy level difference exceeds the phonon energy

cut-off h̄ωc, the current flow vanishes at zero temperature. Actually, ET is expected to continue
slowly because of higher order terms. There is also the interaction with the electromagnetic
field, and also small thermal fluctuations if the temperature is not zero.

A consequence of this calculation is that close to the Marcus inversion point, and at low
temperature, the rate of electron transfer cannot be constant as a function of time but depends
on the electron transfer itself. Generally, it slows down as a function of time, so the density of
electron transferred may look like a stretched exponential. Actually, this depends on the details
of the damping function.
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